
The motion of a non-rigid ellipse in a general 2D deformation

Kieran F. Mulchrone *, Killian Walsh

Department of Applied Mathematics, University College, Cork

Received 13 June 2005; received in revised form 2 December 2005; accepted 10 December 2005

Available online 26 January 2006

Abstract

A solution for the deformation of a non-rigid viscous elliptical inclusion in a matrix of differing viscosity is developed for the case of a general

2D deformation. A Newtonian rheology is assumed and velocities and stresses are equated at the boundary. An important parameter is the

viscosity ratio given by the ratio of the external to the internal viscosities. The dynamics of the behaviour of such inclusions is examined for the

cases of pure and simple shear and variable viscosity ratio. In general less viscous inclusions tend to accumulate finite strain more rapidly than

more rigid inclusions. Large discordancies between the internal finite strain ellipse orientation and the bulk external finite strain ellipse are to be

expected. It is also found that the kinematics of deformation inside an inclusion can often be one of super shear (i.e. kinematic vorticity number,

Wk, greater than one) even though the external bulk kinematics is one of pure or simple shear (WkZ0 or 1). Objects tend to continuously rotate (the

viscosity ratio must be less than 0.5) or asymptotically rotate (i.e. tend to ultimately align parallel to a fixed direction). This solution has many

applications, some of which are briefly considered.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many areas of understanding in structural geology have

benefited from an interaction between field observation,

theoretical and experimental models of rock behaviour. For

example, the theory of passive deformation (Ramsay, 1967)

applied to elliptical objects has lead to the development of the

Rf/f (Dunnet, 1969), centre to centre (Fry, 1979) and nearest

neighbour (Mulchrone, 2003) methods of strain analysis. An

understanding of the behaviour of rigid elliptical objects has

helped identify structures useful for identifying shear sense

(Passchier and Trouw, 1996, pp. 116–121). In this paper, a

general solution for the behaviour of non-rigid, deformable

elliptical objects under a general deformation is developed that

encompasses both passive and rigid behaviour and intermedi-

ate situations.

Some work has been attempted in this area in the past. Gay

(1968) developed a model for a non-rotating elliptical object

under pure shear flow by extending the model of Taylor (1932)

for a circular object, based in turn on a general theory of Lamb

(1932, pp. 594–598). Gay’s (1968) extended model must be
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treated with caution because Lamb’s formulation “can be

applied to the solution of a number of problems where the

boundary-conditions have relation to spherical surfaces”

(Lamb, 1932, p. 597). Gay (1968) mixes spherical and

elliptical coordinates to obtain a solution, for example at the

boundary of the ellipse r (circular coordinates) are equated with

r (elliptical coordinates) (see also Bilby et al., 1975; Bilby and

Kolbuszewski, 1977; Treagus and Treagus, 2001). However, it

is clear that the results obtained by Gay (1968) serve as a good

first approximation for the case of a non-rotating elliptical

object in pure shear. Gay (1968) used approximate methods to

examine the case of rotation under pure and simple shear.

Bilby and Kolbuszewski (1977) adapted the method of

Eshelby (1957) (i.e. for linear elastic fields around ellipsoidal

inclusions) and by using the well-known analogy between

elasticity and slow incompressible linear viscous flow and

linear elasticity, derived a solution for the behaviour of a

deformable ellipse. The approach taken here extends the work

of Jefferys (1922) and even though the resulting equations are

probably identical to those of Bilby and Kolbuszewski (1977),

our approach is original and gives the solution for flow both

inside and outside the ellipse during a general deformation

explicitly. Due to the long standing interest in Jefferys work in

structural geology we believe our solution is in a more

comprehensible format and we provide applications of

geological interest. Treagus and Treagus (2001) used the

work of Bilby et al. (1975) and Bilby and Kolbuszewski (1977)
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to investigate the influence of object shape on strain in the case

of axes parallel or parallel to a pure shearing deformation.

Recently Schmid and Podladchikov (2003) derived a solution

to the problem considered here by applying Mukhelishvili’s

method. In deriving estimates for the bulk properties of a

dispersion of aligned elliptical inclusions in a host, Fletcher

(2004) considers the case of an anisotropic viscous inclusion in

an anisotropic viscous host material.

In this paper a guide to the theoretical derivation is

presented along with a detailed derivation in the Appendices.

Particular examples are studied in detail and some results are

presented. After a discussion of potential applications in the

areas of strain analysis, fabrics, strain patterns and strain

refraction, the paper is concluded.
2. Guide to the solution

The model developed here is based on the solution for a

rigid object immersed in a viscous fluid by Jefferys (1922);

however, it differs quite significantly in the way velocities and

stresses are handled and equated at the boundary. A detailed

derivation is presented in the Appendices. The rotational

convention adopted here is that the direction along the

positive x-axis is 08 and that anti-clockwise is the positive

direction. At any time instant the model consists of a non-

rigid elliptical object of viscosity mi immersed in a matrix of

viscosity me whose long axis makes an angle f with the

positive x 0-direction (see Fig. 1) and whose long and short

axes are a and b, respectively. The viscosity ratio is defined as

mrZme/mi. The (x 0,y 0) coordinate system is fixed whereas the

(x,y) coordinate system is always defined with respect to the

long and short axes of the elliptical object. In the absence of

the elliptical object an homogeneous deformation defined by a

given velocity gradient tensor (L 0) with respect to (x 0,y 0)

prevails. In the presence of the elliptical object the

homogenous deformation is perturbed near the elliptical

object, but at large distances from the object this perturbation

disappears. Furthermore, we assume that inside the elliptical

object a general homogenous deformation occurs (i.e. no
Fig. 1. Setting for the problem. An elliptical inclusion with viscosity mi is

enclosed in a medium with viscosity me and has long and short semi-axes

labelled a and b, respectively. There is a fixed coordinate system (x 0,y 0) and a

coordinate system that remains parallel to ellipse axes denoted by (x,y).
perturbation), which is usually different to the unperturbed

external deformation. This guarantees that the elliptical object

maintains an elliptical shape at all times.

The derivation proceeds by assuming a form for the

perturbed flow velocity field (u,v) in terms of functions that

first solve Laplace’s equation (i.e. for a function f, P2fZ0)

and second vanishes far from the elliptical object (see

Appendices A.3 and A.4). By requiring continuity/equality

of velocity at the ellipse boundary the external velocity field

can be written in terms of the internal velocity field, the

unperturbed flow and the instantaneous shape of the ellipse

(see Eq. (61)). Using the solution for the external velocity

field and the assumed internal velocity field, both the internal

and external stresses can be calculated (see Eqs. (62) and

(63)). By requiring equality of stresses at the boundary, the

remaining unknown parameters for the internal velocity field

can be calculated (see. Eq. (67)). Therefore the internal and

perturbed velocity fields are all known and the problem is

solved.
3. Results

In this section a number of situations are investigated with

the new solution. It is necessary to calculate the finite strain

state inside the elliptical object. However, this turns out to be

relatively easy because a homogeneous deformation is present

inside the object. The method given by Mancktelow (1991)

(see also Middleton and Wilcock, 1994, pp. 244–245) is

followed. For convenience the points (0,1) and (1,0), which

map to the points (xp,yp) and (xq,yq), respectively, after

deformation, are chosen. Then the strain matrix of Ramsay

and Huber (1983, p. 283) is given by:

xq xp

yq yp

� �

and the equations of Ramsay and Huber (1983, pp.

283–287) can be used to calculate the finite strain state.

The points (xp,yp) and (xq,yq) are calculated by numerically

solving the system of ordinary differential equations given

by Eqs. (68), (73) and (77) subject to appropriate boundary

conditions.
3.1. Pure shear deformation of a particle with its axes

parallel to the stretching direction

This situation has already been discussed by Bilby et al.

(1975), Bilby andKolbuszewski (1977) and Treagus and Treagus

(2001). Under a pure shear deformation L0
12ZL0

21Z0 and

because the particle axes parallel the stretching directions fZ0

or p/2, sin fZ0, the ellipse rotation rate is zero (see Eq. (73)).

The short and long axes of the particle will change according

to Eq. (77) so that the rate of change of the particle aspect ratio

(RZa/b) is:

dR

dt
Z

1

b2

da

dt
bK

db

dt
a

� �
Z

2L0
11mrRð1CRÞ2

mrð1CR2ÞC2R
(1)



Fig. 3. Contours of the rate of rotation of an ellipse relative to that of a similarly

shaped passive object under pure shear.

Fig. 2. Contours of the rate of deformation of an ellipse relative to a similarly

shaped passive object whose long axes parallel the stretching axis in pure shear.
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For a passively deforming particlemrZ1 in the same situation:

dR

dt
Z 2L0

11R (2)

By finding the ratio of Eqs. (1) and (2), the rate of change of a

particle can be compared with that of a passive particle as:

mrð1CRÞ2

mrð1CR2ÞC2R
(3)

As illustrated in Fig. 2 as the particle becomes progressively

more rigid (i.e. mr!1) it deforms more slowly than the

surrounding material and vice versa for less rigid particles

(mrO1). This comparison is only valid for two objects that

instantaneously have the same axial ratio (R). However, in the

limit as R/N (i.e. the particle becomes a layer) the ratio

becomes unity so that a layer deforms in the same way as its

surroundingmaterial independent ofmr. This is in agreementwith

the analyses of Smith (1975), Fletcher (1977) and Johnson and

Fletcher (1994, pp. 46–47) for the mean flow of a layer enclosed

in a material of a different viscosity. However, from the analysis

of Gay (1968) as R/N this ratio is:

5mr

2C3mr

(4)

implying that layers deform at different rates to the surrounding

material except in the case that the internal and external

viscosities are equal, in contradiction of other theories. For

mrZ0 there is no shape change corresponding to a rigid particle

and as mr/N (corresponding to an area-preserving void) an

upper limit for the rate of shape change emerges:

ð1CRÞ2

ð1CR2Þ
(5)
3.2. Pure shear deformation of a particle with its axes

oblique to the stretching direction

Any deviation from the simple premises of the previous

section involves solving the full set of equations (Eqs. (68),

(73) and (77)). However, in the case of pure shear

(L0
12ZL0

21Z0) from which the motion of an non-rigid ellipse

is given by:

df

dt
Z

L0
11ðRC1Þð1C2RðmrK1ÞCR2Þsinð2fÞ

ðRK1Þð1C2mrRCR2Þ

dR

dt
Z

2L0
11mrcosð2fÞRð1CRÞ2

mrð1CR2ÞC2R

(6)

In the case of a passive elliptical object the equations

governing its motion are found by setting mrZ1:

df

dt
Z

L0
11ðR

2 C1Þsinð2fÞ

ðR2K1Þ

dR

dt
Z 2L0

11cosð2fÞR

therefore, the rates of change relative to that of a passive

marker (for orientation and axial ratio respectively) are:

ðRC1Þ2ð1C2RðmrK1ÞCR2Þ

ðR2 C1Þð1C2mrRCR2Þ

mrð1CRÞ2

mrð1CR2ÞC2R
(7)

It is important to note that these comparisons are valid only

for objects instantaneously sharing the same orientation and

axial ratio. First of all it is clear that the rate of change of axial

ratio is the same as that for an ellipse parallel to the stretching

axis by comparing Eqs. (3) and (7) and Fig. 2 displays its

characteristics. Fig. 3 illustrates the situation for rate of

rotation. Elliptical objects that are less viscous than the

surrounding medium rotate faster than passive markers,

whereas those that are more viscous rotate more slowly.

However, this effect lessens as the axial ratio increases.

In the oblique case, the evolution of a non-rigid object will be

more complex as the rate of change of the axial ratio depends on

orientation aswell as the current axial ratio. In Fig. 4a an example

is shown that illustrates rapid accentuation of axial ratio of a less



Fig. 4. Elliptical object oriented obliquely to the stretching axis (initially at

K708) with an initial axial ratio of 4. Solid line illustrates passive marker

behaviour (mrZ1.0), thick dashed line represents more viscous behaviour (mrZ
0.1) and thin dashed line is for less viscous behaviour (mrZ10). (a) Variation of

object axial ratio versus bulk (i.e. external) finite strain (Rs, the ratio of the long

and short axes of the finite strain ellipse). (b) Variation of object orientations

versus bulk finite strain.

Fig. 5. Internal strain characteristics for a less (mrZ10) and more viscous object (mrZ
axial ratio of 4. (a) Less viscous. Solid line illustrates the finite strain axial ratio inte

itself. Note that the ordinate axis is graduated according to the external finite strain a

strain ellipse and the dashed line illustrates the orientation of the object itself. (c) Mo

whereas the dashed line illustrates the axial ratio of the object itself. (d) More visc

dashed line illustrates the orientation of the object itself.
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viscous object, whereas a more viscous object changes its shape

less readily by comparison with a passive object. Rotation rates

are dramatically affected, as shown in the example in Fig. 4b

where less viscous objects rotatemuch faster than passive objects

and more rigid objects tend to rotate more slowly.

In the example inFig. 4 the bulk strain (or far-field finite strain)

increases due to pure shear with stretching axis oriented parallel

to the 08-direction. Likewise the internal strain of a passive

markerwillmatch the external strainfield exactly.Butwhat about

the internal strain history for less ormore viscous objects? Fig. 5a

and b shows the results for a less viscous object. Remarkably, the

object rapidly accumulates finite strain internally and there is an

immediate asymmetry between the internal and external finite

strain long axis orientations. However, at higher strains the

orientation of the internal finite strain ellipse approaches that of

the external finite strain ellipse and the orientation of the object

itself. Amore viscous object with the same initial conditions (see

Fig. 5c and d) behaves such that the shape of the object becomes

elongate without much accumulation of internal finite strain;

however, as the object comes into parallelism with the external

stretching axis, internal finite strain begins to accumulate quickly.

There is a striking difference between the orientation of the strain

ellipse and the object orientation that is maintained until high

external finite strains have been achieved. This implies that, in

general, fabric asymmetries cannot be used alone as reliable

kinematic indicators for the bulk external deformation (see for

example Passchier and Trouw, 1996, p. 178).

The kinematics of the internal deformation is also of great

interest as the external kinematics are pure shear and this solution
0.1) initially oriented at K708 to the pure shear stretching axis with an initial

rnal to the object, whereas the dashed line illustrates the axial ratio of the object

xial ratio. (b) Less viscous. Solid line illustrates orientation of the internal finite

re viscous. Solid line illustrates the finite strain axial ratio internal to the object,

ous. Solid line illustrates orientation of the internal finite strain ellipse and the
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allows exploration of how one kinematic state may be contained

within another. The kinematic vorticity number (Wk) is used to

quantify the kinematics and applying the definition of Ghosh

(1987) we find that for an internal deformation it is given by:

Wk Z
u1 Cu2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k2 C ðu1Ku2Þ
2

p (8)

where u1, u2 and k are the components of the velocity gradient

tensor of the internal deformation (see the Appendices). Upon

substitution of Eq. (67) and the flow field with respect to the fixed

axes we have:
Wk Z
ðL0

12KL0
21Þð1C2mrRCR2ÞC ðmrK1ÞðR2K1Þ ðL0

12 CL0
21Þcosð2fÞK2L0

11sinð2fÞ
� �

ð1C2mrRCR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
r ð1CRÞ4

ðL0
12CL0

21Þcosð2fÞK2L0
11sinð2fÞð Þ2

ð1C2mrRCR2Þ2
C

2L0
11cosð2fÞCðL0

12CL0
21Þsinð2fÞð Þ2

ðmrC2RCmrR
2Þ2

h ir (9)
and in the case of pure shear this reduces to:
Wk Z
L0

11sinð2fÞðmrK1ÞðR2K1Þ

ð1C2mrRCR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L02

11m
2
r ð1CRÞ4 sin2ð2fÞ

ð1C2mrRCR2Þ2
C cos2ð2fÞ

ðmrC2RCmrR
2Þ2

h ir (10)

Fig. 6. Internal deformation characteristics of both a more and less viscous

inclusion in a pure shear deformation. Contours are for kinematic vorticity

(Wk). (a) Less viscous elliptical inclusion (mrZ10). (b) More viscous elliptical

object (mrZ0.1).
Note that the absolute value ofL0
11 cancels out this expression,

although its sign is important. Fig. 6 illustrates Wk for a range of

ellipseR andf values. In Fig. 6a a less-viscous elliptical inclusion

is present (mrZ10) and it is found that an obliquely oriented

object internally undergoes intermediate shear (i.e. between pure

and simple shear) in a sense opposite to the sense of rotation of the

object itself. For example a dextrally rotating object undergoes

sinistral shear. If the limit asR/N for Eq. (10) is taken, then the

situation for an infinitely long layer (or very long elliptical object)

can be assessed. The resulting expression is:

Wk Z
L0

11sinð2fÞðmrK1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L02

11 m2
r sin

2ð2fÞCcos2ð2fÞ
� �q (11)

From Fig. 7a it is clear that as the enclosed layer becomes less

competent simple shear dominates provided the layer is

somewhat obliquely oriented. Notice that as passive behaviour

is approached (i.e. mrZ1) the behaviour inside the layer is the

same as that outside, i.e. WkZ0.

A different behaviour emerges in the case of a more viscous

object. In Fig. 6b the situation for mrZ0.1 is presented. Close to

the stretching and shortening direction and for low R,

intermediate shear occurs, with a sense of shear synthetic to

the object rotation sense, e.g. for fO0, the object rotates

dextrally and internal dextral shearing occurs. Significantly, for

108!(f(!808 and RO1.5 (approximately) super shear occurs

(i.e. a pulsating strain history; Ramberg, 1975), again with a

sense of shear consistent with the object rotation sense. Note

that elliptical objects tend to rotate into parallelism with

the stretching direction implying that in the present case super

shear will be temporary. However, it does raise the prospect

that super shear may be much more common than previously

supposed in natural rocks consisting of inclusions and/or inside

larger scale inclusions. In the case of infinitely long more

viscous layers a wide range of behaviours exist (see Fig. 7b).
Super shear only occurs for mr!0.5 and a restricted range of

angles and in all other cases intermediate shear occurs.

3.3. Bulk simple shear deformation

In this section the behaviour of competent and incompe-

tent elliptical inclusions are investigated under a bulk simple

shear strain regime. This situation was considered by Bilby

and Kolbuszewski (1977), but they did not look at the

internal finite strain history. Taking L0
11ZL0

22ZL0
21Z0 the

equations governing the motion are given by:



Fig. 7. Behaviour of very long (layer-like) inclusions. (a) 3D plot of Wk versus f and mr. In this case the object is less viscous i.e. mrO1. (b) Contour plot for more

viscous objects (0!mr!1).
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df

dt
Z

L0
12 ðRð2mrK1ÞC1Þcos2fKR2ðRC2mrK1Þsin2f
� �

ðRK1ÞðR2 C2mrRC1Þ

dR

dt
Z

2L0
12mrRðRC1Þ2sinð2fÞ

2mrðR
2 C1ÞC2R

(12)

and by letting mrZ1 the corresponding passive behaviour is

described by:

df

dt
Z

L0
12ðcos

2fKR2sin2fÞ

R2K1

dR

dt
Z L0

12Rsinð2fÞ (13)

so that the rates of change relative to a passive marker are

given by:
cosð2fÞðRC1Þ2ðR2C2ðmrK1ÞRC1ÞKðR2K1ÞðR2C2mrRC1Þ

2ðR2C2mrRC1Þðcos2fKR2sin2fÞ

mrð1CRÞ2

mrð1CR2ÞC2R

Clearly the relative rate of change of R is the same as that

for an object under pure shear (see Fig. 2). However, the

situation for relative rotation rates is much more complex

and additionally depends on orientation. In this case it is

easier to directly consider the expressions given in Eq. (12).

An important feature of the solution is exhibited by Eq. (12),

also a feature of the general case (Eq. (73)). When the object

becomes circular (i.e. a/b or R/1) the expression for rate of

rotation (of the long axes as opposed to material rotation)



Fig. 8. Phase diagrams for the solutions of Eq. (12). For a given value of (R,f),

the path taken (i.e. how R and f change over time) can be judged by following

the arrows. Solid lines are example paths. Note closed loops in centre of (a),

which surround the single fixed point occurring for mr!0.5. Note also in (b)

and (c) that lines tend to converge on lines emanating from close to G458;

these curves correspond to Eq. (15).

Fig. 9. Example solution for mrZ0.2. Note the periodic oscillation of both R and

f. The maximum value of R corresponds to the position where the object is

parallel to the shear plane.
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becomes infinite. This is a mathematical artefact arising

because the derivation hinges on attaching a coordinate system

to an elliptical object. However, in the absence of a long axis

(i.e. a circle) this approach fails. It is interesting to note that in

the case of a perfectly rigid object (mrZ0) the expression for

rotation rate becomes:

df

dt
Z

KL0
12½cos

2fCR2sin2f�

ðR2K1Þ

due to (RK1) cancelling out above and below the line (see also

Eq. (48)). Therefore, in the special case of a rigid object this

artefact disappears.

In order to understand the behaviour of objects a little

analysis is required. Fixed points are first determined by setting

the differential equations in Eq. (12) to zero (i.e. these are

points where the rates of change are zero) and solving for both

R and f. There is only one solution given by:

R�Z
1

1K2mr

; f�Z 0 (14)

and from the constraints that RR1 and the expression beneath

the line for R* must not be zero, we find that this fixed point can

only exist for 0%mr!0.5. This indicates fundamentally

different kinds of dynamical behaviour for mr!0.5 and

mrR0.5. In the rigid case (mrZ0) the fixed point only exists

for R*Z1, i.e. a circular object. Using the terminology of

Mulchrone et al. (2005), the dynamics of the behaviour of non-

rigid objects consists of continuous and asymptotic rotations. It

can be shown using the techniques of non-linear dynamics (see

for example Strogatz, 1994; Chang Man Fong and De Kee,

1999, p. 17) that the fixed point is at the centre of closed

periodic trajectories. Therefore for mr!0.5 we expect objects

to continuously rotate as R periodically rises and falls (see

Fig. 8a). It is also noted that for fZGp/2, dR/dtZ0. It is also

interesting to note that at the fixed point the solution is one

where neither the shape nor orientation of the ellipse changes

during simple shear, a behaviour previously reported by Bilby

and Kolbuszewski (1977).

By considering the expression for rotation rate (in Eq. (12)),

equating it with zero and solving it for f, curves that objects

tend to rotate away from or towards are derived:

fZGcosK1 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RC2mrK1

ðRC1ÞðR2C2ðmrK1ÞC1Þ

s !
(15)

By looking at the rate of change of rotation rate it is found

that objects rotate towards the positive curve and away from

the negative curve (see also Fig. 8). For mr!0.5 the positive

and negative curves coalesce to form a closed curve (see

Fig. 8a). Inside this curve objects continuously rotate without

turning a full circle. An example solution is shown in Fig. 9.

Objects attain their maximum R at fZ0 and the orientation

flips instantaneously when RZ1. This is a newly discovered

behaviour. Outside the curve, objects rotate through a full

circle similar to the already known trajectories of rigid objects



Fig. 10. Internal deformation characteristics of both a more and less viscous inclusion in a simple shear deformation. Contours are for kinematic vorticity (Wk).
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(Ghosh and Ramberg, 1976) but clearly the details are

different.

By contrast for mrR0.5, a different regime is encountered in

the absence of a fixed point (see Fig. 8b and c). In this case objects

are ultimately aligned parallel to the shear direction. Objects

rotate towards the positive curve in Eq. (15) and away from the

negative curve. This behaviour is similar to that exhibited by

passive objects; however, the details will differ greatly.

Modification of Eq. (9) for the case of simple shear leads to

an expression for the kinematics of deformation inside the

object as follows:

WkZ
L0

12½1C2mrRCR2Ccosð2fÞðmrK1ÞðR2K1Þ�

ð1C2mrRCR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L02

12m
2
r ð1CRÞ4 sin2ð2fÞ

ðmrC2RCmrR
2Þ2
C cos2ð2fÞ

ð1C2mrRCmrR
2Þ2

h ir

Contour plots for Wk are presented in Fig. 10 for mrZ1.5,

0.8 and 0.2. Less viscous objects internally undergo inter-

mediate shear, whereas more viscous objects tend to undergo

super-shear (WkO1) for the most part. This becomes

accentuated for very rigid objects culminating of course for

totally rigid objects undergoing a rigid rotation corresponding

to WkZN. It is no surprise then that the internal finite strain

histories for mr!1 tend to be dominated by pulsating histories,

as demonstrated to occur for WkO1 by Ramberg (1975).

Fig. 11 shows the evolution of the shape and orientation of

passive, more and less viscous objects under simple shear by

comparison with the accumulated bulk (i.e. external) finite

strain. Clearly the shape of the less viscous object rapidly

attains a high aspect ratio by comparison with the passive

object, whereas the shape of the more viscous object changes
Fig. 11. Elliptical object oriented obliquely to the shear plane (initially at 1108)

with an initial axial ratio of 4. Solid line illustrates passive marker behaviour

(mrZ1.0), thick dashed line represents more viscous behaviour (mrZ0.1) and

thin dashed line is for less viscous behaviour (mrZ10). (a) Variation of object

axial ratio versus bulk (i.e. external) finite strain (Rs). (b) Variation of object

orientations versus bulk finite strain.
much more slowly. After very high strains the more rigid object

has the potential to obtain a lower aspect ratio (see the example

in Fig. 9). Object orientations are broadly similar but initially,

at least, the less viscous object rotates faster than the passive

object and the more rigid object rotates the slowest. Eventually

both the passive and less viscous objects will line up with the

shear plane, whereas the more rigid object has the capacity to

rotate right around (in this particular instance it would take

very high strains before this occurs).

Under bulk simple shear the internal characteristics of strain

in a less viscous object (see Fig. 12a and b) demonstrates more

rapid accumulation of internal finite strain by comparison with

the object aspect ratio. Also, large differences between the

internal finite strain ellipse orientation and the object

orientation are to be expected and can persist to very high

levels of external finite strain. In the case of a more rigid object

(see Fig. 12c and d), the object aspect ratio tends to increase

whilst the internal finite strain axial ratio decreases, due to the

dominance of super shear internally (see Fig. 10c). Addition-

ally, large differences between the finite strain ellipse

orientation and object orientation are expected and whilst the

object orientation tends to parallel the shear plane (at the scale

illustrated) the finite strain ellipse orientation crosses the shear

plane, but ultimately tend to parallel the shear plane.

Considering the situation where mr!0.5 and curve objects

continuously rotate without turning a full circle (see above),

extremely complex finite strain behaviour can occur. Fig. 13

illustrates the situation for mrZ0.1 and an initial axial ratio of

1.1 oriented at 1108. The axial ratio of the object periodically

rises and falls, whereas the finite strain axial ratio exhibits a

periodic oscillation on two scales (see Fig. 13a). Both the

object and finite strain orientations fully rotate, although the

period of the rotations are out of phase. By comparing Fig. 13a

and b it is clear that the large scale oscillation of the finite strain

axis coincides with the rotations going in and out of phase.

4. Discussion and applications

The solution presented and investigated in this paper

provides a solution for the behaviour of isolated elliptical

objects assuming that they undergo homogeneous deformation

internally. The solution is flexible in that it encompasses all

types of competency contrast and general deformations. The

solution should be useful in many geological situations, a few

of which will be briefly discussed here.

Methods for strain analysis (see for example Lisle, 1994;

Mulchrone et al., 2003) commonly assume passive behaviour of

markers, although there are methods which do not (Arbaret et al.,

2000; Jezek and Hrouda, 2002a,b; Treagus, 2002; Treagus and

Treagus, 2002). There are situations where this assumption does

not hold; however, the solution presented here (and its 3D

equivalent) will allow this assumption to be relaxed. This will

involve future development of new methods for the behaviour of

populations of objects under bulk homogeneous deformations.

In moving away from passive behaviour, account must be taken

of the potential interactions betweenneighbouringobjects. This is

also work to be completed in the future.



Fig. 12. Internal strain characteristics for a less (mrZ10) and more viscous object (mrZ0.1) initially oriented at 1108 to the shear plane with an initial axial ratio of 4.

(a) Less viscous. Solid line illustrates the finite strain axial ratio internal to the object, whereas the dashed line illustrates the axial ratio of the object itself. Note that

the ordinate axis is graduated according to the external finite strain axial ratio. (b) Less viscous. Solid line illustrates orientation of the internal finite strain ellipse and

the dashed line illustrates the orientation of the object itself. (c) More viscous. Solid line illustrates the finite strain axial ratio internal to the object, whereas the

dashed line illustrates the axial ratio of the object itself. (d) More viscous. Solid line illustrates orientation of the internal finite strain ellipse and the dashed line

illustrates the orientation of the object itself.
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There has been considerable interest recently in the

dynamics of flanking structures (Passchier, 2001; Weismayr

and Grasemann, 2004). This has involved finite-element

modelling (Grasemann and Stüwe, 2001; Grasemann et al.,
Fig. 13. Internal strain situation for a more rigid object (mrZ0.1) initially

oriented at 1108 to the shear plane with an initial axial ratio of 1.1. (a) Solid line

illustrates the finite strain axial ratio internal to the object, whereas the dashed

line illustrates the axial ratio of the object itself. Note that the ordinate axis is

graduated according to time (at timeZ100, the corresponding external finite

strain is approximately 10000). (b) Solid line illustrates orientation of the

internal finite strain ellipse and the dashed line illustrates the orientation of the

object itself.
2003), analogue modelling (Exner et al., 2004) and geometric

descriptive schemes (Coelho et al., 2005). The solution

developed in this paper is immediately applicable to this

situation whereby the CE (i.e. cross-cutting element; Passchier,

2001) is modelled as an elliptical inclusion with high axial ratio
Fig. 14. Application of the developed solution to the modeling of flanking

structures. (a) Pre-deformation situation (b) Situation after moderate dextral

simple shear.
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that can be either more or less viscous than the surrounding

medium (the host element, HE). For example in Fig. 14 an

elliptical inclusion with an initial axial ratio of 50 is deformed

under dextral simple shear with mrZ40. This example was

generated by calculating the positions of grid points using Eqs.

(58) and (59) for points outside the ellipse and Eq. (68) for

points inside the ellipse and keeping track of which point is

connected to which (implemented in Mathematica). From this

example alone, some salient features of flanking structures can

be discerned. There is a sinistral offset across the CE (antithetic

to the bulk dextral shear sense) whilst the gentle flanking folds

indicate a dextral shear sense (see for example Exner et al.,

2004).

It should also be possible to apply the model in the study of

the relationship between internal and external fabrics and their

patterns around large scale bodies such as igneous intrusions;

however, this has not as yet been attempted. It may also be

possible to apply the model to the geometry of shear zones, by

modelling shear zones as less viscous elongate inclusions.

Furthermore, by studying the relationships between internal

and external fabrics a more complete understanding of strain

refraction may be achieved.

In conclusion, a solution has been presented for the

deformation of viscous elliptical objects immersed in a more

or less viscous medium. It is found that complex internal

deformation patterns and strain histories can occur even

during pure shear deformation. In particular semi-rigid objects

during simple shear tend to undergo super-shear deformation.

The solution has many potential applications in structural

geology.
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Appendix A

In this appendix a detailed derivation of the solution is

presented, which is based upon and extends the solution given

by Jefferys (1922). Typographical errors in Jefferys (1922) are

corrected and an approach consistent with modern structural

geology is taken. Hopefully this will enable greater under-

standing of the approach. We highlight below where our

solution departs from that of Jefferys (1922). Essentially the

derivation up until Eq. (55) is a 2D analogy of Jefferys (1922)

3D analysis for a rigid object.
A.1. Undisturbed flow

Consider the situation in Fig. 1. If the ellipse was not present,

the fluid is assumed to exhibit a homogeneous flow-type given

by the velocity gradient tensor L 0 so that the velocities u0 and v0

are:

u0 Z L0
11x0 CL0

12y
0 v0 Z L0

21x0 CL0
22y

0 (16)

however this flow relative to the (x,y) coordinate system is given

by:

LZRL0RT (17)

where R is the rotation matrix and superscript T means

transpose:

RZ
cosf sinf

Ksinf cosf

 !
(18)

and noting that L0
iiZ0 for isochoric flow:

L11Z
1

2
L0

11KL0
22

� �
cosð2fÞC L0

12CL0
21

� �
sinð2fÞ

� �

L12Z
1

2
L0

12KL0
21C L0

12CL0
21

� �
cosð2fÞC L0

22CL0
11

� �
sinð2fÞ

� �

L21Z
1

2
L0

21KL0
12C L0

12CL0
21

� �
cosð2fÞC L0

22CL0
11

� �
sinð2fÞ

� �

L22Z
1

2
L0

22KL0
11

� �
cosð2fÞK L0

12CL0
21

� �
sinð2fÞ

� �
(19)

so that LiiZ0 as well. Hence the velocity of the unperturbed flow

relative to the (x,y) coordinate system is given by:

u0 Z L11xCL12y (20)

v0 Z L21xCL22y (21)
A.2. Basic fluid mechanics

From basic fluid mechanics our solution must satisfy some

equations (see Johnson and Fletcher (1994, pp. 401–403) or Lai

et al. (1993 pp. 355–357) for example):

mV2u Z
vp

vx
(22)

mV2v Z
vp

vy
(23)

vu

vx
C

vv

vy
Z 0 (24)

m is viscosity and p is pressure. For a Newtonian material the

stresses are given by:

sij Z 2mDijKpdij

where DijZ 1
2
ðLijCLjiÞ.
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A.3. Some useful functions

The equation of the ellipse is given by:

x2

a2
C

y2

b2
K1Z 0 (25)

Define the function l(x,y) such that it is the positive root of:

x2

a2 Clðx; yÞ
C

y2

b2 Clðx; yÞ
K1Z 0 (26)

If l(x,y) is a constant then a family of elliptical curves is

defined. Alternatively if we select any point (x,y) then there is a

particular value of l(x,y) that can be calculated. For

conciseness we denote l(x,y) simply as l, but must remember

that it is actually a function. Another function P of x and y is

defined as:

1

P2
Z

x2

ða2 ClÞ2
C

y2

ðb2 ClÞ2
(27)

Using implicit differentiation the following are derived:

vl

vx
Z

2P2x

a2 Cl
(28)

vl

vy
Z

2P2y

b2 Cl
(29)

If we define D(l):

DðlÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 ClÞðb2 ClÞ

p
(30)

If sometimes we use D then we mean D(l), in all other cases
we specify the argument explicitly. Then the following

integrals are of interest (i.e. will appear as part of the solution):

aZ

ðN
l

dx

ða2 CxÞDðxÞ
(31)

bZ

ðN
l

dx

ðb2 CxÞDðxÞ
(32)

gZ

ðN
l

dx

ða2 CxÞðb2 CxÞDðxÞ
(33)

Jefferys (1922) did not use a different symbol under the

integral, which may be confusing. Note also that x is a function

of x and y. The 3D equivalent expressions have a closed form

solution as given by Jezek et al. (1999) and we can evaluate the

above to be (Mandal et al., 2001):

aZ
2

a2Kb2
1K

b2 Cl

D

� �
(34)

bZ
2

a2Kb2
K1C

a2 Cl

D

� �
(35)
gZ
2

ða2Kb2Þ2
K2C

a2 Cb2 C2l

D

� �
(36)

which are all functions of x and y due to the presence of l. The

symbols a0, b0, g0 and D0 are defined as a, b, g and D
evaluated at lZ0.

In determining a solution to the problem we will assume a

solution in terms of functions which are solutions to Laplace’s

equation. That is for some function f(x,y) we have:

V2f Z
v2f

vx2
C

v2f

vy2
Z 0 (37)

Our solution will be written in terms of the following two

functions (and their derivatives):

Uðx; yÞZ

ðN
l

x2

a2 Cx
C

y2

b2 Cx
K1

� �
dx

DðxÞ
(38)

cðx; yÞZgxy (39)

By differentiating we find that:

vU

vx
Z 2xa (40)

vU

vy
Z 2yb (41)

v2U

vx2
Z 2aK

4P2x2

ða2 ClÞ2D
(42)

v2U

vy2
Z 2bK

4P2y2

ðb2 ClÞ2D
(43)

v2U

vxvy
ZK

4P2xy

ða2 ClÞðb2 ClÞD
(44)

and also that:

vc

vx
ZgyK

2P2x2y

ða2 ClÞ2ðb2 ClÞD
(45)

vc

vy
ZgxK

2P2xy2

ða2 ClÞðb2 ClÞ2D
(46)
A.4. Assumed solution

First we note the following identities due to U being a

solution to Laplace’s equation:

x
v2U

vx2
K

vU

vx
ZKx

v2U

vy2
K

vU

vx
(47)

y
v2U

vy2
K

vU

vy
ZKy

v2U

vx2
K

vU

vy
(48)
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Our assumed solution is written in terms of the above as:

u Z u0 CT
vc

vx
CW

vc

vy
CA x

v2U

vx2
K

vU

vx

� �

CH x
v2U

vxvy
K

vU

vy

� �
Cy H 0 v

2U

vx2
CB

v2U

vxvy

� �
(49)

v Z v0 CT
vc

vy
KW

vc

vx
CB y

v2U

vy2
K

vU

vy

� �

CH 0 y
v2U

vxvy
K

vU

vx

� �
Cx H

v2U

vy2
CA

v2U

vxvy

� �
(50)

Using these equations we can derive an expression for the

pressure, p, which will be of use in determining the stress field.

First of all, only terms multiplied by x or y in Eqs. (49) and (50)

will be non-zero in P2u and P2v due to c and U being

solutions to Laplace’s equation. Therefore:

V2u Z 2 B
v3U

vxvy2
C ðH CH 0Þ

v3U

vx2vy
CA

v3U

vx3

� 	
(51)

V2v Z 2 B
v3U

vy3
C ðH CH 0Þ

v3U

vxvy2
CA

v3U

vx2vy

� 	
(52)

which from Eqs. (22)–(24) implies that:

p Z p0 C2m B
v2U

vy2
C ðH CH 0Þ

v2U

vxvy
CA

v2U

vx2

� 	
(53)

where p0 is an arbitrary constant.

Next we substitute our expression for c and U into Eqs. (49)

and (50) (however, we first apply the identity in Eq. (47) to the

coefficient of A in Eq. (49) and the identity in Eq. (48) to the

coefficient of B in Eq. (50)) to get:

u Z ðL11 CgWK2AðaCbÞÞxC ðL12K2bH C2aH 0 CgTÞy

K
2P2x

Dða2 ClÞ

ð2Hða2 ClÞC2H 0ðb2 ClÞCTÞxy

ða2 ClÞðb2 ClÞ

�

C
ð2Bðb2 ClÞK2Aða2 ClÞCWÞy2

ðb2 ClÞ2

�
ð54Þ

v Z ðL21 C2bHK2aH 0 CgTÞxC ðL22KgWK2BðaCbÞÞy

K
2P2y

Dðb2 ClÞ

ð2Aða2 ClÞK2Bðb2 ClÞKWÞx2

ða2 ClÞ2

�

C
ðT C2H 0ðb2 ClÞC2Hða2 ClÞÞxy

ða2 ClÞðb2 ClÞ

�
ð55Þ

At this stage Jefferys made the assumption that the object

was rigid and therefore could only rotate. From now on our

solution differs to that of Jefferys (1922). We assume that the

ellipse can both deform homogeneously and rotate and use

subscript i for referring to this internal object flow. Hence we

assume that the internal motion is:

ui Z kxCu1y (56)

vi ZKu2xKky (57)
At the surface of the ellipse (i.e. lZ0) the internal and

external flows must agree. At lZ0 we have:

uZðL11Cg0WK2Aða0Cb0ÞÞx

CðL12K2b0HC2a0H
0Cg0TÞy

K
2P2x

Da2
ð2Ha2C2H 0b2CTÞxy

a2b2
C

ð2Bb2K2Aa2CWÞy2

b4

� �
ð58Þ

v Z ðL21 C2b0HK2a0H 0 Cg0TÞx

C ðL22Kg0WK2Bða0 Cb0ÞÞyK
2P2y

Db2

!
ð2Aa2K2Bb2KWÞx2

a4
C

ðT C2H 0b2 C2Ha2Þxy

a2b2

� �
ð59Þ

By equating coefficients we derive the following relation-

ships that must be satisfied:

L11 Cg0WK2Aða0 Cb0ÞZ k

L12K2b0H C2a0H
0 Cg0T Zu1

2Ha2 C2H 0b2 CT Z 0

2Bb2K2Ab2 CW Z 0

L21K2b0HK2a0H
0 Cg0T ZKu2

L22Kg0WK2Bða0 Cb0ÞZKk

(60)

which on solution gives:

A Z
ða0 Cb0ÞðL11KkÞKb2g0ðL11 CL22Þ

2ða0 Cb0Þða0 Cb0Kða2 Cb2Þg0Þ

B Z
ða0 Cb0ÞðL22 CkÞKa2g0ðL11 CL22Þ

2ða0 Cb0Þða0 Cb0Kða2 Cb2Þg0Þ

W Z
a2ðL11KkÞKb2ðL22 CkÞ

a0 Cb0Kða2 Cb2Þg0

H Z
a0ðL12 CL21Ku1 Cu2ÞCb2g0ðL12KL21Ku1Ku2Þ

4ða2a0 Cb2b0Þg0

H 0 Z
b0ðL12 CL21Ku1 Cu2ÞKa2g0ðL12KL12Ku1Ku2Þ

4ða2a0 Cb2b0Þg0

T ZK
L12 CL21Ku1 Cu2

g0

ð61Þ
A.5. Stress field

In order to derive the values of u1, u2 and k we must

consider and equate the internal and external stress fields at the

ellipse boundary. For the internal case the pressure is

everywhere constant, pi0. The internal stresses (denoted by

superscript (i)) are therefore:

sðiÞxx Z 2mikKpi0

sðiÞyy ZK2mikKpi0

sðiÞxy Zmiðu1Ku2Þ

(62)



bkCðb2Ka2ÞðkKL11Þ

ab

2CL21Ku1Cu2ÞÞxy
K

ðaCbÞ2ðkKL11Þx
2

a5b
C

ðaCbÞ2ðkKL11Þy
2

ab5

1
A

ÞCaðL21Cu2ÞÞx
3y

b3
C

4ðaCbÞ2ðkKL11Þx
2y2

a5b5

1
A

3
7777777777775
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and the external stresses (denoted by superscript (e)) evaluated

at the boundary (i.e. lZ0) are:

sðeÞxx ZKpe0Cme

2a

CP2 2ð3b2ðL12Ku1ÞCa2ðL21Ku2ÞC2abðL1

a3b3

0
@

KP4 4ðaCbÞðbðL12Ku1

a7

0
@

2
6666666666664
abkCðb2Ka2ÞðkKL11Þ

ab

2CL21Ku1Cu2ÞÞxy
K

ðaCbÞ2ðkKL11Þx
2

a5b
C

ðaCbÞ2ðkKL11Þy
2

ab5

1
A

ÞCaðL21Cu2ÞÞxy3

b7
K

4ðaCbÞ2ðkKL11Þx
2y2

a5b5

1
A

3
7777777777775
sðeÞyy ZKpe0Cme

K2

CP2 2ðb2ðL12Ku1ÞC3a2ðL21Cu2ÞC2abðL1

a3b3

0
@

KP4 4ðaCbÞðbðL12Ku1

a3

0
@

2
6666666666664
u2Þx
2

C
2bðL12Ku1ÞCaðL12 CL21Ku1 Cu2Þy

2

a4b

1
A

2ðaCbÞ2ðkKL11Þxy3

a3b7
K

2ðaCbÞ2ðkKL11Þx
3y

a7b3

1
A

3
7777775

ð63Þ
sðeÞxy Zme

u1Ku2 CP2 2aðL21 Cu2ÞCbðL12 CL21Ku1 C

a4b

0
@

KP4 4ðaCbÞðbðL12Ku1ÞCaðL21 Cu2ÞÞx
2y2

a5b5
C

0
@

2
6666664

In order to equate the internal and external stresses at the

boundary the unit normal vector (n) to the boundary of the

ellipse is first calculated using the gradient (Marsden and

Tromba, 2003, p. 170):

nZP

x

a2

y

b2

0
BBB@

1
CCCA (64)

The stress vector is calculated by multiplying the stress

tensor by the unit normal (Lai et al., 1993, p. 173):

tZP
sxx sxy

sxy syy

� �
†

x

a2

y

b2

0
BBB@

1
CCCAZP

xsxx

a2
C

ysxy

b2

xsxy

a2
C

ysyy

b2

0
BBB@

1
CCCA (65)

If we denote the first component by X and the

second component by Y then our internal and external stresses
become:
s
ðiÞ
X ZP

ð2mikKpi0Þx

a2
C

miðu1Ku2Þy

b2

0
@

1
A

s
ðiÞ
Y ZP

miðu1Ku2Þx

a2
K

ð2mik Cpi0Þy

b2

0
@

1
A

s
ðeÞ
X ZP

ð2ameðL11KkÞCbð2L11meKpe0ÞÞx

a2b

0
@

C
meðaðL12 CL21ÞC2bðL12Ku1ÞÞy

ab2

1
A

s
ðeÞ
Y ZP

meðbðL12 CL21ÞC2aðL12 Cu2ÞÞx

a2b

0
@

K
ð2bmeðL11KkÞCað2L11me Cpe0ÞÞy

ab2

1
A

(66)

So by equating the x and y coefficients, the stress equality at

the boundary is satisfied and the following solution is achieved
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where it is arbitrarily assumed that pi0Z0 and letting mrZme/

mi:

k Z
mrðaCbÞ2L11

mrða
2 Cb2ÞC2ab

u1 Z
2abL12mr Ca2ðL12mr CL21ðmrK1ÞÞCb2L12

2abmr Ca2 Cb2

u2 ZK
2abL12mr Cb2ðL21mr CL12ðmrK1ÞÞCa2L21

2abmr Ca2 Cb2

pe0 ZK
2ða2Kb2ÞL11mrðmrK1Þ

2abCmrða
2 Cb2Þ

(67)
Appendix B. Constructing a solution

From Eqs. (56) and (57) the internal motion is:

dx

dt
Z kxCu1y

dy

dt
ZKu2xKky (68)

The general equation of an ellipse centred on the origin is:

Ax2 CBy2 CCxyK1Z 0 (69)

noting that all the coefficients and x and y depend on time.

Differentiate Eq. (69) and substitute in Eq. (68) to get:

x2
dA

dt
C2AkKCu2

� �
Cy2

dB

dt
K2BkCCu1

� �

Cxy
dC

dt
C2Au1K2Bu2

� �
Z 0 (70)

which is satisfied by letting the coefficients be zero, giving

expressions for dA/dt, dB/dt and dC/dt. Now the orientation of

the long axis of a general ellipse is:

fZ
1

2
tanK1 C

AKB

� �
(71)

Note that at the exact instant we are interested in CZ0 (i.e.

the ellipse is parallel to the x,y coordinate system), so that by

differentiating both sides and substituting for dA/dt, dB/dt and

dC/dt and letting AZ1/a2 and BZ1/b2:

df

dt
Z

b2u1Ka2u2

a2Kb2
(72)

After substituting for u1, u2 and the flow field with respect

to the fixed coordinate system:

df

dt
Z

1

2
ðL0

21KL0
12Þ

C
ðaCbÞða2Cb2C2abðmrK1ÞÞððL0

12CL0
21Þcos2fK2L0

11sin2fÞ

2ðaKbÞða2Cb2C2abmrÞ

(73)

As a quick check, consider a rigid object (i.e. mrZ0) in

simple shear flow (i.e. L0
12Z _g and all other components zero)
then:

df

dt
ZK_g

a2sin2fCb2cos2f

a2 Cb2

� �
(74)

which is equivalent to the expression of Ghosh and Ramberg

(1976, Eq. 1) taking into account the slightly different

definitions for f (i.e. we take fZ0 as the positive x-axis,

whereas Ghosh and Ramberg take fZ0 as the positive y-axis).

A similar analysis for the long and short axis lengths gives:

da

dt
Z ak (75)

db

dt
ZKbk (76)

and substituting for k and the flow field with respect to the fixed

coordinate system:

da

dt
Z

aðaCbÞ2mrð2L0
11cos2fC ðL0

12 CL0
21Þsin2fÞ

2ðða2 Cb2Þmr C2abÞ

db

dt
ZK

bðaCbÞ2mrð2L0
11cos2fC ðL0

12 CL0
21Þsin2fÞ

2ðða2 Cb2Þmr C2abÞ

(77)
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