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Abstract

A solution for the deformation of a non-rigid viscous elliptical inclusion in a matrix of differing viscosity is developed for the case of a general
2D deformation. A Newtonian rheology is assumed and velocities and stresses are equated at the boundary. An important parameter is the
viscosity ratio given by the ratio of the external to the internal viscosities. The dynamics of the behaviour of such inclusions is examined for the
cases of pure and simple shear and variable viscosity ratio. In general less viscous inclusions tend to accumulate finite strain more rapidly than
more rigid inclusions. Large discordancies between the internal finite strain ellipse orientation and the bulk external finite strain ellipse are to be
expected. It is also found that the kinematics of deformation inside an inclusion can often be one of super shear (i.e. kinematic vorticity number,
Wi, greater than one) even though the external bulk kinematics is one of pure or simple shear (W, =0 or 1). Objects tend to continuously rotate (the
viscosity ratio must be less than 0.5) or asymptotically rotate (i.e. tend to ultimately align parallel to a fixed direction). This solution has many

applications, some of which are briefly considered.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many areas of understanding in structural geology have
benefited from an interaction between field observation,
theoretical and experimental models of rock behaviour. For
example, the theory of passive deformation (Ramsay, 1967)
applied to elliptical objects has lead to the development of the
Ri/¢ (Dunnet, 1969), centre to centre (Fry, 1979) and nearest
neighbour (Mulchrone, 2003) methods of strain analysis. An
understanding of the behaviour of rigid elliptical objects has
helped identify structures useful for identifying shear sense
(Passchier and Trouw, 1996, pp. 116-121). In this paper, a
general solution for the behaviour of non-rigid, deformable
elliptical objects under a general deformation is developed that
encompasses both passive and rigid behaviour and intermedi-
ate situations.

Some work has been attempted in this area in the past. Gay
(1968) developed a model for a non-rotating elliptical object
under pure shear flow by extending the model of Taylor (1932)
for a circular object, based in turn on a general theory of Lamb
(1932, pp. 594-598). Gay’s (1968) extended model must be
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treated with caution because Lamb’s formulation “can be
applied to the solution of a number of problems where the
boundary-conditions have relation to spherical surfaces”
(Lamb, 1932, p. 597). Gay (1968) mixes spherical and
elliptical coordinates to obtain a solution, for example at the
boundary of the ellipse r (circular coordinates) are equated with
p (elliptical coordinates) (see also Bilby et al., 1975; Bilby and
Kolbuszewski, 1977; Treagus and Treagus, 2001). However, it
is clear that the results obtained by Gay (1968) serve as a good
first approximation for the case of a non-rotating elliptical
object in pure shear. Gay (1968) used approximate methods to
examine the case of rotation under pure and simple shear.
Bilby and Kolbuszewski (1977) adapted the method of
Eshelby (1957) (i.e. for linear elastic fields around ellipsoidal
inclusions) and by using the well-known analogy between
elasticity and slow incompressible linear viscous flow and
linear elasticity, derived a solution for the behaviour of a
deformable ellipse. The approach taken here extends the work
of Jefferys (1922) and even though the resulting equations are
probably identical to those of Bilby and Kolbuszewski (1977),
our approach is original and gives the solution for flow both
inside and outside the ellipse during a general deformation
explicitly. Due to the long standing interest in Jefferys work in
structural geology we believe our solution is in a more
comprehensible format and we provide applications of
geological interest. Treagus and Treagus (2001) used the
work of Bilby et al. (1975) and Bilby and Kolbuszewski (1977)
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to investigate the influence of object shape on strain in the case
of axes parallel or parallel to a pure shearing deformation.
Recently Schmid and Podladchikov (2003) derived a solution
to the problem considered here by applying Mukhelishvili’s
method. In deriving estimates for the bulk properties of a
dispersion of aligned elliptical inclusions in a host, Fletcher
(2004) considers the case of an anisotropic viscous inclusion in
an anisotropic viscous host material.

In this paper a guide to the theoretical derivation is
presented along with a detailed derivation in the Appendices.
Particular examples are studied in detail and some results are
presented. After a discussion of potential applications in the
areas of strain analysis, fabrics, strain patterns and strain
refraction, the paper is concluded.

2. Guide to the solution

The model developed here is based on the solution for a
rigid object immersed in a viscous fluid by Jefferys (1922);
however, it differs quite significantly in the way velocities and
stresses are handled and equated at the boundary. A detailed
derivation is presented in the Appendices. The rotational
convention adopted here is that the direction along the
positive x-axis is 0° and that anti-clockwise is the positive
direction. At any time instant the model consists of a non-
rigid elliptical object of viscosity u; immersed in a matrix of
viscosity u. whose long axis makes an angle ¢ with the
positive x’-direction (see Fig. 1) and whose long and short
axes are a and b, respectively. The viscosity ratio is defined as
= /1. The (x',y") coordinate system is fixed whereas the
(x,y) coordinate system is always defined with respect to the
long and short axes of the elliptical object. In the absence of
the elliptical object an homogeneous deformation defined by a
given velocity gradient tensor (L) with respect to (x',y")
prevails. In the presence of the elliptical object the
homogenous deformation is perturbed near the elliptical
object, but at large distances from the object this perturbation
disappears. Furthermore, we assume that inside the elliptical
object a general homogenous deformation occurs (i.e. no

Fig. 1. Setting for the problem. An elliptical inclusion with viscosity u; is
enclosed in a medium with viscosity u. and has long and short semi-axes
labelled a and b, respectively. There is a fixed coordinate system (x’,y") and a
coordinate system that remains parallel to ellipse axes denoted by (x,y).

perturbation), which is usually different to the unperturbed
external deformation. This guarantees that the elliptical object
maintains an elliptical shape at all times.

The derivation proceeds by assuming a form for the
perturbed flow velocity field (u,v) in terms of functions that
first solve Laplace’s equation (i.e. for a function f, V?f=0)
and second vanishes far from the elliptical object (see
Appendices A.3 and A.4). By requiring continuity/equality
of velocity at the ellipse boundary the external velocity field
can be written in terms of the internal velocity field, the
unperturbed flow and the instantaneous shape of the ellipse
(see Eq. (61)). Using the solution for the external velocity
field and the assumed internal velocity field, both the internal
and external stresses can be calculated (see Eqs. (62) and
(63)). By requiring equality of stresses at the boundary, the
remaining unknown parameters for the internal velocity field
can be calculated (see. Eq. (67)). Therefore the internal and
perturbed velocity fields are all known and the problem is
solved.

3. Results

In this section a number of situations are investigated with
the new solution. It is necessary to calculate the finite strain
state inside the elliptical object. However, this turns out to be
relatively easy because a homogeneous deformation is present
inside the object. The method given by Mancktelow (1991)
(see also Middleton and Wilcock, 1994, pp. 244-245) is
followed. For convenience the points (0,1) and (1,0), which
map to the points (x,,y,) and (xq,yq), respectively, after
deformation, are chosen. Then the strain matrix of Ramsay
and Huber (1983, p. 283) is given by:

Go %)

Yq Yp

and the equations of Ramsay and Huber (1983, pp.
283-287) can be used to calculate the finite strain state.
The points (xp,yp) and (x4,y4) are calculated by numerically
solving the system of ordinary differential equations given

by Eqgs. (68), (73) and (77) subject to appropriate boundary
conditions.

3.1. Pure shear deformation of a particle with its axes
parallel to the stretching direction

This situation has already been discussed by Bilby et al.
(1975), Bilby and Kolbuszewski (1977) and Treagus and Treagus
(2001). Under a pure shear deformation L';,=L',; =0 and
because the particle axes parallel the stretching directions ¢ =0
or 7/2, sin ¢ =0, the ellipse rotation rate is zero (see Eq. (73)).
The short and long axes of the particle will change according
to Eq. (77) so that the rate of change of the particle aspect ratio
(R=alb) is:

dR 1 (da, db 2L ) uR(1 + R)?
= a| ="~ (1)

dr P \dt dt' ) wu(l+R®+2R
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Fig. 2. Contours of the rate of deformation of an ellipse relative to a similarly
shaped passive object whose long axes parallel the stretching axis in pure shear.

For a passively deforming particle u, = 1 in the same situation:

dR
e 2L (R (2)

By finding the ratio of Egs. (1) and (2), the rate of change of a
particle can be compared with that of a passive particle as:

(1 +R)’ 3
u.(1 +R? + 2R

As illustrated in Fig. 2 as the particle becomes progressively
more rigid (i.e. u,<1) it deforms more slowly than the
surrounding material and vice versa for less rigid particles
(u.>1). This comparison is only valid for two objects that
instantaneously have the same axial ratio (R). However, in the
limit as R— o (i.e. the particle becomes a layer) the ratio
becomes unity so that a layer deforms in the same way as its
surrounding material independent of u,. This is in agreement with
the analyses of Smith (1975), Fletcher (1977) and Johnson and
Fletcher (1994, pp. 46—47) for the mean flow of a layer enclosed
in a material of a different viscosity. However, from the analysis
of Gay (1968) as R— o this ratio is:

Spy
2 +3u,

“

implying that layers deform at different rates to the surrounding
material except in the case that the internal and external
viscosities are equal, in contradiction of other theories. For
=0 there is no shape change corresponding to a rigid particle
and as u,— o (corresponding to an area-preserving void) an
upper limit for the rate of shape change emerges:

(1+R)?

(1 + R )

3.2. Pure shear deformation of a particle with its axes
oblique to the stretching direction

Any deviation from the simple premises of the previous
section involves solving the full set of equations (Egs. (68),
(73) and (77)). However, in the case of pure shear
(L1, =L'5; = 0) from which the motion of an non-rigid ellipse
is given by:

dp _ L'yj(R+ 1)(1 + 2R, — 1) + R*)sin(2¢)
dr (R—1)(1 +2u,R + R?)

(6)
dR _ 2L’y u,cos(2)R(1 + R)?

dr u(1 + R?) + 2R

In the case of a passive elliptical object the equations
governing its motion are found by setting u, = 1:
dp  L'};(R* + Dsin(2¢) dR

dr (R2 — 1) E = 2L/11COS(2¢)R

therefore, the rates of change relative to that of a passive
marker (for orientation and axial ratio respectively) are:
(R + 1*(1 +2R(u, — 1) + R?) w1 + R)?

(R? + (1 + 2u,R + R?) u(1 + R?) + 2R

(7

It is important to note that these comparisons are valid only
for objects instantaneously sharing the same orientation and
axial ratio. First of all it is clear that the rate of change of axial
ratio is the same as that for an ellipse parallel to the stretching
axis by comparing Egs. (3) and (7) and Fig. 2 displays its
characteristics. Fig. 3 illustrates the situation for rate of
rotation. Elliptical objects that are less viscous than the
surrounding medium rotate faster than passive markers,
whereas those that are more viscous rotate more slowly.
However, this effect lessens as the axial ratio increases.

In the oblique case, the evolution of a non-rigid object will be
more complex as the rate of change of the axial ratio depends on
orientation as well as the current axial ratio. In Fig. 4a an example
is shown that illustrates rapid accentuation of axial ratio of a less
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Fig. 3. Contours of the rate of rotation of an ellipse relative to that of a similarly
shaped passive object under pure shear.
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Fig. 4. Elliptical object oriented obliquely to the stretching axis (initially at
—70°) with an initial axial ratio of 4. Solid line illustrates passive marker
behaviour (1, = 1.0), thick dashed line represents more viscous behaviour (u,=
0.1) and thin dashed line is for less viscous behaviour (u,= 10). (a) Variation of
object axial ratio versus bulk (i.e. external) finite strain (R;, the ratio of the long
and short axes of the finite strain ellipse). (b) Variation of object orientations
versus bulk finite strain.
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viscous object, whereas a more viscous object changes its shape
less readily by comparison with a passive object. Rotation rates
are dramatically affected, as shown in the example in Fig. 4b
where less viscous objects rotate much faster than passive objects
and more rigid objects tend to rotate more slowly.

In the example in Fig. 4 the bulk strain (or far-field finite strain)
increases due to pure shear with stretching axis oriented parallel
to the 0°-direction. Likewise the internal strain of a passive
marker will match the external strain field exactly. But what about
the internal strain history for less or more viscous objects? Fig. 5a
and b shows the results for a less viscous object. Remarkably, the
object rapidly accumulates finite strain internally and there is an
immediate asymmetry between the internal and external finite
strain long axis orientations. However, at higher strains the
orientation of the internal finite strain ellipse approaches that of
the external finite strain ellipse and the orientation of the object
itself. A more viscous object with the same initial conditions (see
Fig. 5c and d) behaves such that the shape of the object becomes
elongate without much accumulation of internal finite strain;
however, as the object comes into parallelism with the external
stretching axis, internal finite strain begins to accumulate quickly.
There is a striking difference between the orientation of the strain
ellipse and the object orientation that is maintained until high
external finite strains have been achieved. This implies that, in
general, fabric asymmetries cannot be used alone as reliable
kinematic indicators for the bulk external deformation (see for
example Passchier and Trouw, 1996, p. 178).

The kinematics of the internal deformation is also of great
interest as the external kinematics are pure shear and this solution
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Fig. 5. Internal strain characteristics for a less (1, = 10) and more viscous object (u,=0.1) initially oriented at —70° to the pure shear stretching axis with an initial
axial ratio of 4. (a) Less viscous. Solid line illustrates the finite strain axial ratio internal to the object, whereas the dashed line illustrates the axial ratio of the object
itself. Note that the ordinate axis is graduated according to the external finite strain axial ratio. (b) Less viscous. Solid line illustrates orientation of the internal finite
strain ellipse and the dashed line illustrates the orientation of the object itself. (c) More viscous. Solid line illustrates the finite strain axial ratio internal to the object,
whereas the dashed line illustrates the axial ratio of the object itself. (d) More viscous. Solid line illustrates orientation of the internal finite strain ellipse and the

dashed line illustrates the orientation of the object itself.
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allows exploration of how one kinematic state may be contained

within another. The kinematic vorticity number (W) is used to

quantify the kinematics and applying the definition of Ghosh

(1987) we find that for an internal deformation it is given by:
wy + w,

W, = 8
VAT (0 —w)? ®

where w;, w, and k are the components of the velocity gradient
tensor of the internal deformation (see the Appendices). Upon
substitution of Eq. (67) and the flow field with respect to the fixed
axes we have:

Wk =

(U'p —Ly)(1 + 2R + R) + (g, — DR = D[(L'5 + L'51)cos(2¢) —2L'y;5in(2¢)]

Super shear only occurs for u,<0.5 and a restricted range of
angles and in all other cases intermediate shear occurs.

3.3. Bulk simple shear deformation

In this section the behaviour of competent and incompe-
tent elliptical inclusions are investigated under a bulk simple
shear strain regime. This situation was considered by Bilby
and Kolbuszewski (1977), but they did not look at the
internal finite strain history. Taking L';; =L',, = L'5; =0 the
equations governing the motion are given by:

(€))

((L' 13 +L y1)cos2¢)—2L' 1, Sin(2¢))2

(1 +2uR + R2)\/ 71+ R)4[ (I42LR+R)?

and in the case of pure shear this reduces to:

W, = L'y;5in(2¢) (1 — DR* —1)

i (2L 1c052$)+(L' 1, +L2) )sin(2¢))2:|

(ur+2R+u R?)?

(10)

(1 +2u,R + R?)

cos’(2¢)

L1+ RY [ 4

(1+2u,R+R?

Note that the absolute value of L', cancels out this expression,
although its sign is important. Fig. 6 illustrates W, for a range of
ellipse R and ¢ values. In Fig. 6a a less-viscous elliptical inclusion
is present (u,=10) and it is found that an obliquely oriented
object internally undergoes intermediate shear (i.e. between pure
and simple shear) in a sense opposite to the sense of rotation of the
object itself. For example a dextrally rotating object undergoes
sinistral shear. If the limit as R— oo for Eq. (10) is taken, then the
situation for an infinitely long layer (or very long elliptical object)
can be assessed. The resulting expression is:

W, = L'yysin2¢)(u, —1) (11)
VLR (435in?20) + cos’(29)

From Fig. 7a itis clear that as the enclosed layer becomes less
competent simple shear dominates provided the layer is
somewhat obliquely oriented. Notice that as passive behaviour
is approached (i.e. u,=1) the behaviour inside the layer is the
same as that outside, i.e. W,,.=0.

A different behaviour emerges in the case of a more viscous
object. In Fig. 6b the situation for u,=0.1 is presented. Close to
the stretching and shortening direction and for low R,
intermediate shear occurs, with a sense of shear synthetic to
the object rotation sense, e.g. for ¢>0, the object rotates
dextrally and internal dextral shearing occurs. Significantly, for
10° < (¢(<80° and R> 1.5 (approximately) super shear occurs
(i.e. a pulsating strain history; Ramberg, 1975), again with a
sense of shear consistent with the object rotation sense. Note
that elliptical objects tend to rotate into parallelism with
the stretching direction implying that in the present case super
shear will be temporary. However, it does raise the prospect
that super shear may be much more common than previously
supposed in natural rocks consisting of inclusions and/or inside
larger scale inclusions. In the case of infinitely long more
viscous layers a wide range of behaviours exist (see Fig. 7b).

(e +2R+urR2)2}

Fig. 6. Internal deformation characteristics of both a more and less viscous
inclusion in a pure shear deformation. Contours are for kinematic vorticity
(Wy). (a) Less viscous elliptical inclusion (1, =10). (b) More viscous elliptical
object (u,=0.1).
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Fig. 7. Behaviour of very long (layer-like) inclusions. (a) 3D plot of Wy versus ¢ and u,. In this case the object is less viscous i.e. u,> 1. (b) Contour plot for more

viscous objects (0<pu,<1).

dg _ L' [(R2u, —1) + 1)cos’p —R*(R + 2u, — Dsin’¢]

cos(2¢)(R+ 1*(R?+2(u, — DR+ 1) — (R* — )(R* +2u,R+ 1)

dt (R—1D(R*+2u,R+1)

dR 2L R(R + 1)*sin(2¢)
2u,(R? +1) +2R

=
(12)

and by letting u,=1 the corresponding passive behaviour is
described by:

d¢ L' 5(cos’p —R*sin’¢) dR )
i - T L',Rsin2¢)  (13)

so that the rates of change relative to a passive marker are
given by:

2(R* +2u,R + 1)(cos’ ¢ — R*sin’¢)

_ m(+R?
u(1+R>+2R

Clearly the relative rate of change of R is the same as that
for an object under pure shear (see Fig. 2). However, the
situation for relative rotation rates is much more complex
and additionally depends on orientation. In this case it is
easier to directly consider the expressions given in Eq. (12).

An important feature of the solution is exhibited by Eq. (12),
also a feature of the general case (Eq. (73)). When the object
becomes circular (i.e. a— b or R— 1) the expression for rate of
rotation (of the long axes as opposed to material rotation)
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becomes infinite. This is a mathematical artefact arising
because the derivation hinges on attaching a coordinate system
to an elliptical object. However, in the absence of a long axis
(i.e. a circle) this approach fails. It is interesting to note that in
the case of a perfectly rigid object (u,=0) the expression for
rotation rate becomes:

d¢ _ —L'p[cos’¢ + R*sin*¢]
dt (R2—1)

due to (R— 1) cancelling out above and below the line (see also
Eq. (48)). Therefore, in the special case of a rigid object this
artefact disappears.

In order to understand the behaviour of objects a little
analysis is required. Fixed points are first determined by setting
the differential equations in Eq. (12) to zero (i.e. these are
points where the rates of change are zero) and solving for both
R and ¢. There is only one solution given by:

1

R¥ = ——|
1_2:ur

¢x =0 (14)

and from the constraints that R> 1 and the expression beneath
the line for R* must not be zero, we find that this fixed point can
only exist for 0<pu,.<0.5. This indicates fundamentally
different kinds of dynamical behaviour for u,<0.5 and
u:=>0.5. In the rigid case (u,=0) the fixed point only exists
for R¥=1, i.e. a circular object. Using the terminology of
Mulchrone et al. (2005), the dynamics of the behaviour of non-
rigid objects consists of continuous and asymptotic rotations. It
can be shown using the techniques of non-linear dynamics (see
for example Strogatz, 1994; Chang Man Fong and De Kee,
1999, p. 17) that the fixed point is at the centre of closed
periodic trajectories. Therefore for u,<0.5 we expect objects
to continuously rotate as R periodically rises and falls (see
Fig. 8a). It is also noted that for ¢ = +n/2, dR/dt=0. It is also
interesting to note that at the fixed point the solution is one
where neither the shape nor orientation of the ellipse changes
during simple shear, a behaviour previously reported by Bilby
and Kolbuszewski (1977).

By considering the expression for rotation rate (in Eq. (12)),
equating it with zero and solving it for ¢, curves that objects
tend to rotate away from or towards are derived:

R+2u.—1
R+DR2+2(u,—1)+ 1)

¢ =tcos ' [R (15)

By looking at the rate of change of rotation rate it is found
that objects rotate towards the positive curve and away from
the negative curve (see also Fig. 8). For u,<0.5 the positive
and negative curves coalesce to form a closed curve (see
Fig. 8a). Inside this curve objects continuously rotate without
turning a full circle. An example solution is shown in Fig. 9.
Objects attain their maximum R at ¢ =0 and the orientation
flips instantaneously when R=1. This is a newly discovered
behaviour. Outside the curve, objects rotate through a full
circle similar to the already known trajectories of rigid objects

——

P —

| P —

--------

G et

Fig. 8. Phase diagrams for the solutions of Eq. (12). For a given value of (R,$),
the path taken (i.e. how R and ¢ change over time) can be judged by following
the arrows. Solid lines are example paths. Note closed loops in centre of (a),
which surround the single fixed point occurring for u,<0.5. Note also in (b)
and (c) that lines tend to converge on lines emanating from close to +45°%
these curves correspond to Eq. (15).

3.5

2.5

1.5

time
90

45

o NN NN
Nzo\ﬂ 4N50 B0

fime

—45

-90

Fig. 9. Example solution for u,=0.2. Note the periodic oscillation of both R and
¢. The maximum value of R corresponds to the position where the object is
parallel to the shear plane.
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Fig. 10. Internal deformation characteristics of both a more and less viscous inclusion in a simple shear deformation. Contours are for kinematic vorticity (Wy).
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(Ghosh and Ramberg, 1976) but clearly the details are
different.

By contrast for u,>0.5, a different regime is encountered in
the absence of a fixed point (see Fig. 8b and c). In this case objects
are ultimately aligned parallel to the shear direction. Objects
rotate towards the positive curve in Eq. (15) and away from the
negative curve. This behaviour is similar to that exhibited by
passive objects; however, the details will differ greatly.

Modification of Eq. (9) for the case of simple shear leads to
an expression for the kinematics of deformation inside the
object as follows:

W L'yp[1 +2u,R + R +cos(2¢) (i, — DR —1)]
=

cos2(2¢)
(1+2pR+pR?)?

(1 20,R+ B2, L (1 4+ R | e

i+ 2R+ u, R?

Contour plots for Wy are presented in Fig. 10 for u,=1.5,
0.8 and 0.2. Less viscous objects internally undergo inter-
mediate shear, whereas more viscous objects tend to undergo
super-shear (W, >1) for the most part. This becomes
accentuated for very rigid objects culminating of course for
totally rigid objects undergoing a rigid rotation corresponding
to W= . It is no surprise then that the internal finite strain
histories for u, <1 tend to be dominated by pulsating histories,
as demonstrated to occur for Wi, >1 by Ramberg (1975).

Fig. 11 shows the evolution of the shape and orientation of
passive, more and less viscous objects under simple shear by
comparison with the accumulated bulk (i.e. external) finite
strain. Clearly the shape of the less viscous object rapidly
attains a high aspect ratio by comparison with the passive
object, whereas the shape of the more viscous object changes

(a) 20

15
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100

60
40
20

Fig. 11. Elliptical object oriented obliquely to the shear plane (initially at 110°)
with an initial axial ratio of 4. Solid line illustrates passive marker behaviour
(u=1.0), thick dashed line represents more viscous behaviour (u,=0.1) and
thin dashed line is for less viscous behaviour (u,=10). (a) Variation of object
axial ratio versus bulk (i.e. external) finite strain (Ry). (b) Variation of object
orientations versus bulk finite strain.

much more slowly. After very high strains the more rigid object
has the potential to obtain a lower aspect ratio (see the example
in Fig. 9). Object orientations are broadly similar but initially,
at least, the less viscous object rotates faster than the passive
object and the more rigid object rotates the slowest. Eventually
both the passive and less viscous objects will line up with the
shear plane, whereas the more rigid object has the capacity to
rotate right around (in this particular instance it would take
very high strains before this occurs).

Under bulk simple shear the internal characteristics of strain
in a less viscous object (see Fig. 12a and b) demonstrates more
rapid accumulation of internal finite strain by comparison with
the object aspect ratio. Also, large differences between the
internal finite strain ellipse orientation and the object
orientation are to be expected and can persist to very high
levels of external finite strain. In the case of a more rigid object
(see Fig. 12c and d), the object aspect ratio tends to increase
whilst the internal finite strain axial ratio decreases, due to the
dominance of super shear internally (see Fig. 10c). Addition-
ally, large differences between the finite strain ellipse
orientation and object orientation are expected and whilst the
object orientation tends to parallel the shear plane (at the scale
illustrated) the finite strain ellipse orientation crosses the shear
plane, but ultimately tend to parallel the shear plane.

Considering the situation where u,<0.5 and curve objects
continuously rotate without turning a full circle (see above),
extremely complex finite strain behaviour can occur. Fig. 13
illustrates the situation for u,=0.1 and an initial axial ratio of
1.1 oriented at 110°. The axial ratio of the object periodically
rises and falls, whereas the finite strain axial ratio exhibits a
periodic oscillation on two scales (see Fig. 13a). Both the
object and finite strain orientations fully rotate, although the
period of the rotations are out of phase. By comparing Fig. 13a
and b it is clear that the large scale oscillation of the finite strain
axis coincides with the rotations going in and out of phase.

4. Discussion and applications

The solution presented and investigated in this paper
provides a solution for the behaviour of isolated elliptical
objects assuming that they undergo homogeneous deformation
internally. The solution is flexible in that it encompasses all
types of competency contrast and general deformations. The
solution should be useful in many geological situations, a few
of which will be briefly discussed here.

Methods for strain analysis (see for example Lisle, 1994;
Mulchrone et al., 2003) commonly assume passive behaviour of
markers, although there are methods which do not (Arbaret et al.,
2000; Jezek and Hrouda, 2002a,b; Treagus, 2002; Treagus and
Treagus, 2002). There are situations where this assumption does
not hold; however, the solution presented here (and its 3D
equivalent) will allow this assumption to be relaxed. This will
involve future development of new methods for the behaviour of
populations of objects under bulk homogeneous deformations.
In moving away from passive behaviour, account must be taken
of the potential interactions between neighbouring objects. This is
also work to be completed in the future.
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Fig. 12. Internal strain characteristics for a less (1, = 10) and more viscous object (u,=0.1) initially oriented at 110° to the shear plane with an initial axial ratio of 4.
(a) Less viscous. Solid line illustrates the finite strain axial ratio internal to the object, whereas the dashed line illustrates the axial ratio of the object itself. Note that
the ordinate axis is graduated according to the external finite strain axial ratio. (b) Less viscous. Solid line illustrates orientation of the internal finite strain ellipse and
the dashed line illustrates the orientation of the object itself. (c) More viscous. Solid line illustrates the finite strain axial ratio internal to the object, whereas the
dashed line illustrates the axial ratio of the object itself. (d) More viscous. Solid line illustrates orientation of the internal finite strain ellipse and the dashed line

illustrates the orientation of the object itself.

There has been considerable interest recently in the
dynamics of flanking structures (Passchier, 2001; Weismayr
and Grasemann, 2004). This has involved finite-element
modelling (Grasemann and Stiiwe, 2001; Grasemann et al.,

5

4

!\ 7\,

WAV AVANAVY AT AN AV AYA WY
AYAYAVAYAVAVAVAVAY
= % w w4 v w J w w

20 40 60 80 100
fime

90

45

—_—

—45

Fig. 13. Internal strain situation for a more rigid object (u,=0.1) initially
oriented at 110° to the shear plane with an initial axial ratio of 1.1. (a) Solid line
illustrates the finite strain axial ratio internal to the object, whereas the dashed
line illustrates the axial ratio of the object itself. Note that the ordinate axis is
graduated according to time (at time= 100, the corresponding external finite
strain is approximately 10000). (b) Solid line illustrates orientation of the
internal finite strain ellipse and the dashed line illustrates the orientation of the

object itself.

2003), analogue modelling (Exner et al., 2004) and geometric
descriptive schemes (Coelho et al., 2005). The solution
developed in this paper is immediately applicable to this
situation whereby the CE (i.e. cross-cutting element; Passchier,
2001) is modelled as an elliptical inclusion with high axial ratio
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Fig. 14. Application of the developed solution to the modeling of flanking
structures. (a) Pre-deformation situation (b) Situation after moderate dextral
simple shear.
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that can be either more or less viscous than the surrounding
medium (the host element, HE). For example in Fig. 14 an
elliptical inclusion with an initial axial ratio of 50 is deformed
under dextral simple shear with u,=40. This example was
generated by calculating the positions of grid points using Eqgs.
(58) and (59) for points outside the ellipse and Eq. (68) for
points inside the ellipse and keeping track of which point is
connected to which (implemented in Mathematica). From this
example alone, some salient features of flanking structures can
be discerned. There is a sinistral offset across the CE (antithetic
to the bulk dextral shear sense) whilst the gentle flanking folds
indicate a dextral shear sense (see for example Exner et al.,
2004).

It should also be possible to apply the model in the study of
the relationship between internal and external fabrics and their
patterns around large scale bodies such as igneous intrusions;
however, this has not as yet been attempted. It may also be
possible to apply the model to the geometry of shear zones, by
modelling shear zones as less viscous elongate inclusions.
Furthermore, by studying the relationships between internal
and external fabrics a more complete understanding of strain
refraction may be achieved.

In conclusion, a solution has been presented for the
deformation of viscous elliptical objects immersed in a more
or less viscous medium. It is found that complex internal
deformation patterns and strain histories can occur even
during pure shear deformation. In particular semi-rigid objects
during simple shear tend to undergo super-shear deformation.
The solution has many potential applications in structural

geology.
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Appendix A

In this appendix a detailed derivation of the solution is
presented, which is based upon and extends the solution given
by Jefferys (1922). Typographical errors in Jefferys (1922) are
corrected and an approach consistent with modern structural
geology is taken. Hopefully this will enable greater under-
standing of the approach. We highlight below where our
solution departs from that of Jefferys (1922). Essentially the
derivation up until Eq. (55) is a 2D analogy of Jefferys (1922)
3D analysis for a rigid object.

A.l. Undisturbed flow

Consider the situation in Fig. 1. If the ellipse was not present,
the fluid is assumed to exhibit a homogeneous flow-type given
by the velocity gradient tensor L’ so that the velocities #’ and v/

are:
I/t/ = L/llx/ + L/IZy/ Vl = L/21x/ + Ll22yl (16)

however this flow relative to the (x,y) coordinate system is given
by:

L =RLR" (17)

where R is the rotation matrix and superscript T means
transpose:

R — ( co'sqﬁ sin¢> (18)
—sing cos¢

and noting that L';; = 0 for isochoric flow:

Ly =% [(L'y) —L'y)cos(2¢) + (L' 12+ L' )sin(2¢)]
L, =% (L', =L+ (L'a+ L) cos2p) + (L' + L' ) sin(2¢)]
Ly, =% L'y =Ly + (L' +L5)cos2p) + (L' + L'y )sin(2¢) ]
Ly =% [(L'y—L'11)cos(2¢) — (L' 15+ L5y ) sin(2¢)]

19)

so that L;;=0 as well. Hence the velocity of the unperturbed flow
relative to the (x,y) coordinate system is given by:

uy = Lyyx + Lpy (20)

vo = Lyyx + Lypy 21

A.2. Basic fluid mechanics

From basic fluid mechanics our solution must satisfy some
equations (see Johnson and Fletcher (1994, pp. 401-403) or Lai
et al. (1993 pp. 355-357) for example):

uviu = % (22)
O0x
d

,quv =% (23)
dy

ou Ov

I T G 24

d0x + dy 0 @4

u is viscosity and p is pressure. For a Newtonian material the
stresses are given by:

;; = 2uD;; —poy
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A.3. Some useful functions

The equation of the ellipse is given by:

2 2
Xy
S+ —1=0 (25)

Define the function A(x,y) such that it is the positive root of:

x2 y2

—1=0 26
a’ + Ax,y) + b + Ax,y) (26)

If A(x,y) is a constant then a family of elliptical curves is
defined. Alternatively if we select any point (x,y) then there is a
particular value of A(x,y) that can be calculated. For
conciseness we denote A(x,y) simply as A, but must remember
that it is actually a function. Another function P of x and y is
defined as:

1 2 2
T2 = 2 2 : 2 @7
P (a+ 1 B +2)
Using implicit differentiation the following are derived:

04 2Px

=" 28
ax a*+2 (28)
o _ 2Py (29)
dy b +2

If we define A(A):

V(@ + DB+ 2) (30)

If sometimes we use A then we mean A(A), in all other cases
we specify the argument explicitly. Then the following
integrals are of interest (i.e. will appear as part of the solution):

4 =

J(a +86)4()

(31)
- 32
J(b2 +6)4() 52)

T d
Y= J : (33)

) @ + 5B +£)4©)

Jefferys (1922) did not use a different symbol under the
integral, which may be confusing. Note also that & is a function
of x and y. The 3D equivalent expressions have a closed form
solution as given by Jezek et al. (1999) and we can evaluate the
above to be (Mandal et al., 2001):

2 b* + A
o=y (1— . ) (34)

2 a* + A
5—m(—1+ y ) (35)

2 a> +b> +22
7= @ — D) (_2 + y ) (36)

which are all functions of x and y due to the presence of A. The
symbols «y, Bo, Yo and Ay are defined as «, B, v and A
evaluated at A=0.

In determining a solution to the problem we will assume a
solution in terms of functions which are solutions to Laplace’s
equation. That is for some function f{x,y) we have:

2f——f of =0 (37)

dy*

Our solution will be written in terms of the following two
functions (and their derivatives):

“ )C2 y2 dg

Qx,y) = + -1 38

() J<a2+s e )A(s) 8
A
x(x,y) = yxy (39
By differentiating we find that:

9e _ 2xa (40)

Ox

a0Q

F 2y6 41)
y

’Q 4P°x°

N e P — 42

w2 T @+ 04 (42)

9*Q 4P%y?

— =2 43

dy? g (b* + 224 (43)
20 4p?

d __ Xy (44)

J0xdy (@ + N> + 14

and also that:

ax 2P*x%y
X _ oy — 45
ax T @020+ 04 (45)
Jdx 2P%xy?
X — - 46
dy T @ N0+ )24 (46)

A.4. Assumed solution

First we note the following identities due to Q being a
solution to Laplace’s equation:

Q90 9*Q 94Q
— T = 47
Yo ox * dy*  ox “7)
9”0 90 Q90
y (48)

T
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Our assumed solution is written in terms of the above as:

2Q 90
u—uo—i-Ta—X—I-Wa—X—i-A(a 8_)

a a ax*  Ox
Q0 ,9°Q 0°Q
Hlx———F— H —+B— 49
+ (xaxay 6y> +y< ax? + 6x6y> “49)

dx dx 9°Q 0@
v=vg+T=—W_—=+Bly_—
W ay

dy dx
o e 9Q N H62Q+A62Q 50)
Y dxdy  Ox * dy? dxdy
Using these equations we can derive an expression for the
pressure, p, which will be of use in determining the stress field.
First of all, only terms multiplied by x or y in Egs. (49) and (50)

will be non-zero in V2 and V?v due to x and Q being
solutions to Laplace’s equation. Therefore:

’Q ’Q ’Q
V2u=2{Baaz+(H+H) P +AW] (51)

Qe o 0
=2|B +(H+H A—— 52
{ 3y +H A+ )6x6y2 * 6x26y] (52)

which from Egs. (22)—-(24) implies that:

*Q OZQ 9°Q

p=p0+2,u{Bay2 (H+H) Aaz] (53)

where p, is an arbitrary constant.

Next we substitute our expression for x and Q into Egs. (49)
and (50) (however, we first apply the identity in Eq. (47) to the
coefficient of A in Eq. (49) and the identity in Eq. (48) to the
coefficient of B in Eq. (50)) to get:

u= ULy +yW-=2A(a¢ +B)x + (L, —26H + 2aH' + yT)y
. 2P% ((2[‘1(612 + ) +2H'(b* + A) + T)xy
A(@® + ) (@ + N> + 2
(2B(b2 + ) —24(@* + A) + W)y? )
(b* + )2

(54)

v =(Ly +26H—2aH +yT)x + (Ly, —yW —2B(a + 8))y
2Py <(2A(a2 + X)) —2B(* + 1) —W)x?
AD* + 1) (@® + A)?
(T + 2H'(b* + ) + 2H(a® + X)xy
(@* + DB + 2 )

(55)

At this stage Jefferys made the assumption that the object
was rigid and therefore could only rotate. From now on our
solution differs to that of Jefferys (1922). We assume that the
ellipse can both deform homogeneously and rotate and use
subscript i for referring to this internal object flow. Hence we
assume that the internal motion is:

V; = —wyrXx —ky &)

At the surface of the ellipse (i.e. A=0) the internal and
external flows must agree. At A=0 we have:

u=(Ly; +voW—2A(ap+ Bo))x

+ (le - 260H + 20(0Hl + ’Y()T)y
_ 2P%x ((2Ha® +2H'D* 4 T)xy N (2Bb* —2Ad* + W)y? 58)
Aa? a*b? b*
Vv = (L21 + 260H—20(()H/ + ’Y()T)X
sz
+ (Lyp —voW —2B(ag + B0))y e
2Aa> —2Bb* —W)x*> (T +2H'b?> + 2Hd?
x(( a ! )x Jr( 22 a)xy>(59)
a a“b

By equating coefficients we derive the following relation-
ships that must be satisfied:

Lyy +7voW —2A(eg + Bo) =k
12 —2B0H + 2a0H' + 7T = w,
2Ha*> +2H'p* +T =0
2Bb* —2Ab* + W =0
21 —260H —200H" + 7T = —w,
Ly —voW —2B(ag + By) = —k

(60)

which on solution gives:
_(apt Bo)Lyy —k) —b*yo(Li; + L)
2(erg + Bo)(erg + By —(a* + b*)vp)
_ (o + Bo)(Lyy + k) —a’yo(Lyy + Lyy)
2(atg + Bo)erg + By —(a® + b*)yo)

_ a*(Lyy —k) —b*(Lyy + k)
ay + By —(a* + by
g = Qo T Lo~ Fop) + b yo(Liy — Ly —w) — w))
4(a*ay + b*By)vo
y = Bo(Liz + Ly —w; + wy) —a*yo(Lyy —Lip —w) — ;)
4(a* oy + b*Bo)vo
Ly + Ly —o, +
T =_Ln 21 — W] T Wy 61)
Yo

A.5. Stress field

In order to derive the values of w;, w, and k we must
consider and equate the internal and external stress fields at the
ellipse boundary. For the internal case the pressure is
everywhere constant, p;o. The internal stresses (denoted by
superscript (i)) are therefore:

(1) = 2p;k —pio
oy = —2uik —pig (62)

(l) = pi(w; —wy)
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and the external stresses (denoted by superscript (e)) evaluated become:
at the boundary (i.e. A=0) are:

2abk + (b* —a*)(k—Ly;)
ab

U)(cex) = —Pe0 + Me

P 2(3b* (L, — 1) +a*(Lyy —w) +2ab(Lyp + Loy —w; +0x))xy  (a+b)y(k—L;)x* N (a+by*(k—L;))y*
a’b? a’b ab®

Cl7 b3 615 bS

. (4(a +B)(b(Liy — ) +ally + )y +4(a+b)2(k_L11)x2)’2>

—2abk + (b* —a*)(k—L,,)
ab

O'S,) = —Peo t He

P2 2(b*(Liy — w1) +3a*(Ly; +w)) +2ab(Liy + Ly —w; + wy))xy  (a+b)*(k—Ly)x* Lt by (k—Ly))y*
b’ a’h ab’

a3 b7 aS bS

. (4<a+b)<b<L12 — o) +ally + o)y’ _4(“+b)2(k_L11)x2y2)

2a(Ly; + 0)) + b(Lys + Ly —w; + w))x? n 2b(Lyy —wy) + a(Lyp + Loy —w; + wy)y*
a*b a*b
o\ = ke (63)
_pt [ Ha H D)L —w) + allyy + o)y | 2a+ DAk —Liwy’  2a+ b (k—Lyx'y
b’ a2b7 S

W) — Wy +P2

In order to equate the internal and external stresses at the
boundary the unit normal vector (n) to the boundary of the
ellipse is first calculated using the gradient (Marsden and ag) =P

(Quik —pio)x " Hi(w) —wy)y
3

2
Tromba, 2003, p. 170): a b
X G wiw; —w)x ik + pi)y
= oy =P 2 - 2
2 a b
n=~P y (64)
- © _ p| Qape(Liy —k) + bQ2Ljjpe —peo))X
b oy =P 5
ab
(66)
The stress vector is calculated by multiplying the stress T pe(a(Lyy + Lyy) + 2b(Ly; —wy))y
tensor by the unit normal (Lai et al., 1993, p. 173): ab*
X X0y | YOy o© —p Me(D(Lip + Loy) + 2a(Lyp + w)))x
) 2 2 Y 2p
a a b a
t=P<%‘ 0”)- =P (65)
xo Ty
T ) |3 oy P (2bue(Lyy = k) + a@Ly e + peo))y
b a b - 2
ab
If we denote the first component by X and the So by equating the x and y coefficients, the stress equality at

second component by Y then our internal and external stresses the boundary is satisfied and the following solution is achieved
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where it is arbitrarily assumed that p;o=0 and letting .= u./
Mi
A b)’Ly,
u(a* + b?) + 2ab

_ 2abLipp, + @*(Lig + Loy (e — 1) + 5Ly,

@1 2abu, + a* + b?
) 2 (67)
s — _ 2abLypp, + b™(Lyypr + Lip(u, — 1) +a"Ly,
2 2abu, + a* + b*
— _2((12 _bz)Ll l:ur(/“Lr - 1)
Peo 2ab + p(d + b?)
Appendix B. Constructing a solution
From Egs. (56) and (57) the internal motion is:
dx d
E=kx+w1y —);=—w2x—ky (68)

The general equation of an ellipse centred on the origin is:
AP +BY +Cxy—1=0 (69)

noting that all the coefficients and x and y depend on time.
Differentiate Eq. (69) and substitute in Eq. (68) to get:
dB

dA
2 _ 2 _
X <_dt + 2Ak Cw2> +y <_dt 2Bk + Ca)1>

dcC
+ xy (E + 2Aw, —Zsz) =0 (70)

which is satisfied by letting the coefficients be zero, giving
expressions for dA/d¢, dB/dt and dC/dt. Now the orientation of
the long axis of a general ellipse is:

b= ttan” (ﬁ) )

Note that at the exact instant we are interested in C=0 (i.e.
the ellipse is parallel to the x,y coordinate system), so that by
differentiating both sides and substituting for dA/d¢, dB/dt and
dC/dr and letting A= 1/a* and B=1/b*:

dﬁ _ bPw, —d’w,
b &=
After substituting for wq, w, and the flow field with respect

to the fixed coordinate system:

d 1
fZE(LIZI _L/]Z)

(72)

N (a+b)(@®+b*+2ab(u, — D)L 15+ L 51 )cos2¢p — 2L | sin2¢)

2(a—Db)(@*+b*+ 2abpu,)
(73)

As a quick check, consider a rigid object (i.e. u,=0) in
simple shear flow (i.e. L', = ¥ and all other components zero)

then:

d_¢ . a*sin’¢ + b*cos’¢
a7 2+

(74)

which is equivalent to the expression of Ghosh and Ramberg
(1976, Eq. 1) taking into account the slightly different
definitions for ¢ (i.e. we take ¢ =0 as the positive x-axis,
whereas Ghosh and Ramberg take ¢ =0 as the positive y-axis).

A similar analysis for the long and short axis lengths gives:

da

R 7
" ak (75)
db

s —bk (76)

and substituting for k and the flow field with respect to the fixed
coordinate system:

da  a(a+ by u(2L'11c0s2¢ + (L', + L'5))sin2¢)

dr 2((a*> + b*)u, + 2ab)
7
db _ bla + b (2L 1c052¢ + (L' 1y + L'y))sin2¢)
dr 2((a® + bH)u, + 2ab)
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